MIPSYCON – 2015

3D Coming to a Substation Near You

November 10, 2015

Michael Chasser
Electrical Designer
Burns & McDonnell
Michael Chasser
Electrical Designer
10 Years at Burns & McDonnell
7+ Years Doing 3D Substation Design
3+ Years Doing 3D BIM Modeling (Residential Architecture)
Facilitated Numerous Large Scale 2D-3D Design Transitions for Electric Utilities

CADD Platforms
• AutoCAD, MEP, REVIT
• Autodesk Inventor Professional
• MicroStation
• Bentley Substation
• SoildWorks

Document Management Platforms
• Autodesk Vault
• ProjectWise
Agenda

• Where are we?
 • Current CADD Platforms & Design Environments

• Where are we going?
 • Alternate CADD Platforms & Design Environments

• Why go 3D?
 • Benefits & Challenges of 3D

• How do we get there?
 • Migration Guidelines & Procedures

• Questions
Where Are We?

Current CADD Platforms & Design Environments

MicroStation V8, V8i

AutoCAD 2014, 2015, 2016
Where Are We?

Current CADD Platforms & Design Environments (cont’d)

• 2D design environment

• One design change requires modification to multiple drawings

• Manual bill of material creation

• Static or “semi-smart” 2D blocks or cells for commonly used parts

• Custom programming or auto-lisp creation for automation

• Manual inter-disciplinary coordination
Where Are We Going?

Alternate CADD Platforms & Design Environments

Bentley Substation V8i

• MicroStation V8i platform with substation specific design tools

• 3D intelligent models for physical layouts

• Intelligent protection & controls design

• Create accurate reports for construction estimating

• Generate 2D construction drawings from linked 3D model
Where Are We Going?

Alternate CADD Platforms & Design Environments (cont’d)

Autodesk Inventor Professional & Automation Force Substation Design Suite

- Autodesk Inventor 3D design platform with SDS toolkit
- 3D intelligent models for physical layouts
- Intelligent protection & controls design
- Create accurate reports for construction estimating
- Generate 2D construction drawings from linked 3D model
Why Go 3D?

Benefits of 3D

• Improved Efficiency
 • Single update to 3D model propagates changes to all linked drawings
 • Build library of intelligent 3D models

• Improved Accuracy
 • Eliminate omissions from bill of materials (BOM)
 • Ability to verify dimensions in all coordinates

• Reduced Design/Engineering Time
 • Utilize automated processes
 • Develop standard “modules” for commonly used designs
Why Go 3D?

Benefits of 3D (cont’d)

• Consistent Design/Application of Standards
 • Easily link to standards & automate consistency

• Inter-Disciplinary Coordination
 • Physical/Electrical vs. Civil/Structural vs. Relay & Control
Why Go 3D?

Benefits of 3D (cont’d)

- **Automated Processes**
 - Bill of Materials (BOM)
 - Cable Lists
 - Conduit Fill Calculations
 - Lightning Protection (Shielding)
 - Conductor sag
 - Ground grid design
 - Clearance checking (phase-to-phase & phase-to-ground)
 - Automatic wire numbering
 - Error checking
 - Self-healing schematics & wiring diagrams

- **Engineering Drawing Output**
 - Plans, Elevations, Isometric Drawings
 - Schematics, Wiring Diagrams, Panel Front Views
Why Go 3D?

Challenges of 3D

• Transition to 3D design is an ORGANIZATIONAL change
 • For transition to be successful, all parties within an organization must be involved
 • Management
 • Engineering
 • Design/Drafting
 • IT
 • Finance
 • Human Resources (HR)

• Large capital investment
 • Software/Hardware
 • Training – shortage of experienced users
 • Development
 • Implementation
How Do We Get There?

Migration Guidelines & Procedures

• Identification of CADD Platform & Document Management System
 • Consider current CADD platform & CADD user experience
 • Consider implications on current document management system
 • Potential change in document management software

• Procurement/Installation/Training of Software (2-4 months)
 • Potential hardware changes to accommodate new software
How Do We Get There?

Migration Guidelines & Procedures (cont’d)

• Standards/Processes/Workflow Development (4-6 months)
 • Develop organizational standards for 3D design
 • Standard filenames
 • Folder structures
 • Develop 3D modeling guidelines/standard practices
 • Organizational 3D modeling preferences & guidelines
 • Create standard documentation for these practices
 • Workflow Development
 • Develop design workflows for internal and/or external engineering
 • Consider all design aspects from start to finish – including review cycles
How Do We Get There?

Migration Guidelines & Procedures (cont’d)

• Pilot Projects (6 months minimum)
 • Execute numerous pilot projects to fully vet standards & practices
 • Start small & simple!
 • Gradually increase size and complexity

• Capitol Investment/Major Development (6 months minimum)
 • Develop standard “content library” of intelligent 3D models
 • Major Equipment
 • Foundation
 • Structures
 • Connectors
 • Line/Bus Work
 • Miscellaneous parts/pieces
 • Reach out to equipment/material vendors for already developed models
How Do We Get There?

Migration Guidelines & Procedures (cont’d)

- Refine Standards/Revise Specifications
 - Make modifications to any necessary standards due to 3D implementation
 - Revise equipment/material specifications to require submission of 3D model (in correct file-type) from equipment/material manufacturer

- Push To Internal Staff/External Consultants
 - Provide 3D modeling guidelines, processes, standards, & workflows
 - Consider how external staff/consultants will access previously developed models
 - VPN access vs. Web-Hosted Server vs. Limited system access
 - Consider how files will be transferred from external staff/consultants
 - VPN access vs. FTP
How Do We Get There?

Typical 2D to 3D Migration Workflow

- Identify CADD Platform
- Software Install/Training
- Standards Development
- Pilot Projects
- Major Development
- Refine Standards/Revise Specifications
- Push Internal/External
Example
Example
Example
Example
Questions