Commission Testing Methods for Protection Systems

Ken Sletten – Minnesota Power
Tom Ernst – GE Grid Solutions

2017 Minnesota Power Systems Conference
Agenda

- Introduction
- Goals and objectives of protection system commission testing
- Maintenance Testing
- Re-commission testing
- Case Studies
- Conclusions
Introduction

- Protection systems require testing to assure proper operation
- 3 separate stages of testing over protection system’s life
 - Type testing
 - Commission testing
 - Life-cycle maintenance testing
- Commission testing is critical
 - Assure safety
 - Functional operation
 - Equally critical in both utility and industrial systems
- Commission testing provides baseline data for maintenance
- Critical for utility installations subject to NERC PRC-005
- Commission and maintenance testing have different goals and objectives
Goals and objectives of protection system commission testing

- Commission tests are performed to assure that the protection system is performing correctly as required for the unique application.
- Must commission test all 5 NERC PRC-005-2 components:
 - Voltage and current sensing devices
 - Protection system DC supply (including batteries, chargers, monitoring circuitry, and power supplies/inverters whether they include batteries or not)
 - Control circuitry (including wiring, trip coils, electro-mechanical auxiliary relays and lock-outs, etc.)
 - Communication systems required for protection system operation
 - Protective relays
- Must also perform energizing procedures and in-service load checks.
Voltage and Current Sensing Devices

- Magnetic core devices
 - VT commission tests
 - Ground leakage test - no unintentional grounds
 - Turns ration check (TTR)
 - Polarity check
 - Test voltage applied to a VT applied to the primary winding to avoid the presence of unsafe high voltages
 - CT commission tests
 - Ground leakage test - no unintentional grounds
 - Turns ration check (TTR)
 - Polarity check
 - Excitation check
Voltage and Current Sensing Devices

- Non-magnetic core device commission tests
 - Optical VTs, CTs
 - Devices have self-testing functionality
 - Rogowski coils
 - Typically have unique calibration characteristics provided by manufacturer
- Primary injection
- In-service load checks
Protection system DC supply

- Batteries, chargers, monitoring circuitry, and power supplies/inverters whether they include batteries or not
 - Tests based on the technology used
 - Battery banks - verify the bank meets design specs and industry standards
 - Battery load/capacity tests
 - Cell impedance measurement
 - Inter-cell connection resistance measurement
 - Specific gravity measurement
 - Cell voltage checks
Protection system DC supply

- Batteries, chargers, monitoring circuitry, and power supplies/inverters whether they include batteries or not
 - Battery chargers
 - Function testing
 - Verification of battery charger settings
 - Alarm verification
 - Methods and tools used for testing and the results of the tests should be saved as base-line data for future maintenance tests
Control circuitry

- Includes wiring, trip coils, electro-mechanical auxiliary relays, lock-outs, etc.
- AC and DC wiring should be checked physically and electrically
 - Point to point wire checks
 - Wiring is physically in agreement with the design documents
 - Injection of electrical quantities
 - Wiring performs the necessary functions
 - Helps to identify any errors in the design
 - Develope a system to document each test
Control circuitry

- AC and DC wiring electrical tests (cont.)
 - Check DC circuits before energizing
 - Pull fuses to isolate
 - Use an ohm meter to verify there are no short circuits
 - Reinstall load fuses one circuit at a time
 - Verify no DC grounds are acquired
Control circuitry

- CT secondary injection
 - Inject 3-phase test set currents into CT circuit
 - Clipping onto the CT wires (no lifting wires)
 - Directly on the CT secondary terminals if accessible
 - Otherwise on the CT shorting block terminals
 - Virtually none of the injected current goes into the CT
 - Inject varying magnitudes of current on the three phases
 - Ex: 0.5, 1.0 and 1.5 amps into phases A, B and C respectively
 - Verify with receiving relays’ metering functions
Control Circuitry

- VT secondary injection
 - Isolate the VT winding from the secondary wiring
 - Pull the VT secondary fuses
 - Clip test set to the load side of the open fuse block
- Wye connected VTs
 - Apply varying magnitude phase-neutral voltages
- Open delta connected VTs
 - Apply varying magnitude phase-phase voltages
- Verify with the relays’ metering
 - Check each device that receives the VT signal
Control circuitry

- Primary injection less common than secondary injection
 - Use a 3-phase generator (typically LV) to energize the substation bus
 - Apply loads on each circuit to cause current flow
 - Check relays’ metering to assure functionally correct
 - Magnitudes and angles
 - Requires a thorough understanding of relay phasor angle referencing
 - Often subject to or controlled by relay settings
 - Take care when interpreting the metered values to assure correct phase identification
- DC control wiring electrically tested while function testing the relay
Communication systems

- All communication systems need to be verified
 - Used by protection system for protection
 - Pilot channels, transfer trip, etc.
 - Used for operation and control
 - SCADA, voice, LANs, data remote access, etc.
 - Typically not subject to PRC-005 requirements
 - Point to point communications functionally verified and documented
 - Signal levels and data transfer rates
 - SCADA remote control functions
 - Verify perform as expected
Communication systems

- All communication systems need to be verified (cont.)
 - SCADA remote control functions
 - Verify perform as expected
 - SCADA metering from standalone metering devices (transducers, meters, etc.)
 - Inject current and voltage device
 - SCADA metering from relay memory registers
 - Test as part of relay functional tests
Communication systems

- All communication systems need to be verified (cont.)
 - Stand-alone communications for transfer trip and/or pilot wire (power line carrier, audio or digital tone systems, etc.)
 - Verify end-end functionality before protective relay functional tests
 - Digital relay communications used for transfer trip and/or pilot wire
 - Verify end-end functionality as part of relay functional tests
Protective relays

- Relay acceptance testing
 - Owner preferences
 - Verify 100% of all included analog and digital I/O
 - Even if not all the I/O are used
 - Load Relay Settings
 - Digital relays
 - Setting files loaded into relays
 - Vendor specific software tools
 - Verify by comparing relay to setting file
 - Should be no differences
 - If differences resend or manually correct
 - Save an image of the compare report showing no differences
Protective relays

- Load Relay Settings (cont.)
 - Non-digital relays
 - Settings entered (adjusted) manually
 - Verify with current and/or voltage injection
 - Function testing
 - Verify all enabled feature as a complete system
 - Protection elements, metered values, logic, communications and I/O
 - Demonstrate system functions as designed
Protective relays

• Function testing (cont.)
 • Automated testing programs are not suited for commission function testing
 • Inject current and voltage based on relay’s settings
 • Not be able to detect setting errors
 • Typos
 • Bad system data
 • Do not test programmed logic or specific I/O functions
 • Used at end to establish a base-line testing report for future maintenance
Protective relays

- Function testing (cont.)
 - Use test values derived from system studies
 - Not values calculated from relay settings
 - Line protection test values from SC program
 - Close-in reverse fault
 - Close-in forward fault
 - Mid-line or balance point fault
 - Remote end fault
 - Run tests with the pilot communication system operational
- Transformer protection
 - Test values derived based on the transformer winding connections and SC program
Protective relays

- Function testing (cont.)
 - Programmed logic functional testing (including I/O)
 - Inject current and voltage to operate protection functions used in the logic
 - Operate inputs to the relay that are used in the logic
 - Verify outputs that are operated by the logic
 - Verify DC circuitry correct to end device
 - Auxiliary relays, lock-out relays, trip coils, etc.
 - Logic diagram useful for complex logic
Energizing procedures and in service load checks

- Energizing procedures vary widely from owner to owner
 - Common goal of energizing the equipment in a logical and safe manner
 - Associated protection systems in service
 - In service load checks
 - Phase identification
 - Voltage readings taken after energization
 - All voltage measuring devices
 - Assure secondary levels and phase identification are correct
 - Challenging on a totally new power system
 - References from existing facilities not available
Energizing procedures and in service load checks

• In service load checks (cont.)
 • Phase identification (cont.)
 • Use end-end communication signal (ex: transfer trip)
 • Temporarily trigger waveform capture reports in relays
 • At new substation and in remote existing system
 • Compare waveforms to assure correct phase identification
 • Phasor measurement unit (PMU) data
Energizing procedures and in service load checks

- In service load checks (cont.)
 - Phase identification (cont.)
 - Cellular based phase checking systems
 - Compare phase angle between remote and local voltages
 - Remove any temporary settings after test complete
- Examine metering of current measuring devices
 - Assure correct ratios, phasing and phase shifts
Energizing procedures and in service load checks

- In service load checks (cont.)
 - Current based differential elements
 - Examine differential and restraint quantities
 - Differential quantity is near or equal to zero
 - Restraint quantity is significant
 - Requires a significant amount of load for reliable results
 - High impedance bus differential
 - Examine operating quantity
 - Voltage across or current through the resistor
 - Measure current from each CT to verify ratios
- Record load check data for future comparison
Maintenance Testing

• Commission testing data is baseline for the life-cycle maintenance
 • Date of commissioning records define time 0 for PRC-005
 • Current and voltage measuring device insulation failure detected
 • Battery and charger performance degradation observed
 • Communication channel degradation flagged
 • As-left relay settings are base-line for maintenance
 • Changes must be researched and validated
 • Automated testing program results remain consistent
Re-commissioning

- Re-commissioning required if significant changes are made
 - Only re-commission aspects of system affected
 - Physical equipment replacement
 - Communication equipment
 - CT/VT
 - Battery or charger
 - Relay
 - Re-commission replaced equipment
Re-commissioning

• Re-commissioning required if significant changes are made
 • Wiring changes
 • Re-commission anything that might have reasonably been affected
 • Setting changes
 • Re-commission those elements/systems affected
 • Firmware upgrade that requires setting file conversion
 • Complete relay re-commission
Case Study: Protection problems at mine ID need to re-commission switchgear

- New cubicles added to existing gear
 - No commission testing performed on additions
 - Trips during loading attempts
 - Wiring errors discovered
 - Missing settings discovered
- Similar problems found in existing cubicles
 - No commissioning records found
- Safety concerns – workers no longer comfortable
- Re-commission entire line-up during next outage
Case Study: Modelling error discovered during commissioning

- New replacement 115 kV line panel
 - Test quantities for distance elements from SC program
 - Ground distance zone 1 operated for remote bus fault
 - Math check confirmed that test fault was within reach
 - Zero-sequence line impedance error discovered in SC program data base
 - Caused wrong Z0/Z1 ratio
 - Resulted in element over-reach
 - Modelling error corrected and settings (Z0/Z1) changed
 - New test values issued for 1LG faults
 - Ground distance performed correctly
 - Avoided future false trip
Case Study: Setting errors discovered while commissioning replacement generator protective relay

- New generator protection to replace existing obsolete relay
 - Settings calculations based on previous relay’s settings
 - Tech ran automated testing program
 - Report indicated no errors
 - Field Engineer and Tech performed commissioning tests
 - Discovered logic and setting omissions
 - Trip output for field breaker wired but not programmed
 - Bus ground detection voltage input wired
 - No associated element enabled and set
 - No output contact programmed or wired
Case Study: Verification of relaying functions in relay using simulated faults discovered firmware issues

- New replacement 115 kV line panel
 - Test quantities for distance elements from SC program
 - Phase distance failed to operated for 3LG faults
 - Examination of SER data discovered that Loss of Potential (LOP) was operating and blocking the elements
- No similar problems observed with other panels using same relay models
- This terminal is weak-feed
 - Voltage drops unusually low during 3LG faults
 - LOP blocks even though memory voltage available for correct distance element operation
- Waiting for a firmware fix from manufacturer
Conclusions

• Protection systems require testing to assure proper operation
• 3 separate stages of testing over protection system’s life
 • Type testing
 • Commission testing
 • Life-cycle maintenance testing
• Commission testing is critical
 • Assure safety
 • Functional operation
 • Equally critical in both utility and industrial systems
• Commission testing provides baseline data for maintenance
• Critical for utility installations subject to NERC PRC-005
• Commission and maintenance testing have different goals and objectives
Thank You

Questions?