Get in Step with Synchronization
By Daniel L. Ransom, PE

Presented by Suparat Pavavicharn, PE
Our Synchronization Discussion

- What are some ways to synchronize my sources?
- What are common sync-check settings?
- How can I safeguard automatic closing?
- What can modern relays do for me?
War of the Currents

- Alternating current vs. direct current
- How to connect two ac systems?

<table>
<thead>
<tr>
<th>AC</th>
<th>Poly-phase AC</th>
<th>DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>George Westinghouse</td>
<td>Nicola Tesla</td>
<td>Thomas Edison</td>
</tr>
</tbody>
</table>
Connecting Two AC Systems

- Match: phase sequence

Get This Right, First!
Connecting Two AC Systems

- Match: voltage amplitude

\[\Delta v \]
Connecting Two AC Systems

- Match: frequency

\[\omega' > \omega \]
- Match: phase angle
Add Live/Dead Voltage-Monitor

\[\Delta V \text{– Voltage Difference} \]

\[\theta \text{– Phase (Slip) Angle} \]

\[V_B \text{ (bus)} \]

\[V_L \text{ (line)} \]

Dead (Line/Bus)

Live (Line/Bus)
Instantaneous Slip Effect

Δf–Slip Frequency (Hz)

ΔV–Voltage Difference

θ–Phase (Slip) Angle

δf–Slip Frequency

δV–Voltage Difference

VL (line)

VB (bus)

Dead (Line/Bus)

Live (Line/Bus)
Auto-Sync 25A Window

- ΔV – Voltage Difference
- $25A$ Angle
- θ – Phase (Slip) Angle
- V_B (bus)
- V_L (line)
- Dead (Line/Bus)
- Live (Line/Bus)
Ways to Synchronize

- Manual
 - Operator close
 - Synchroscope, lamps, meters

- Assisted Manual
 - Operator commands close
 - Sync-check relay supervision

- Automatic
 - Synchronizer matches V and F, and closes
 - Sync-check relay supervision
Tools for Synchronizing
Synchroscope Indicates “Midnight”
Manual Synchronization

- Two bright, one dark lamp
Assisted-Manual Synchronization

Operator
Manual
Switch

Sync-Check
25 Allowed
Close

0°

Phasor
Rotation
Sync-Check Parameters

- Typical settings regions
- Modify for particular requirements
 - Rotating machines
 - Bus to bus

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Typical Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage Difference</td>
<td>10–15% V</td>
</tr>
<tr>
<td>Phase (Slip) Angle</td>
<td>0°–30°</td>
</tr>
<tr>
<td>Slip Frequency</td>
<td>0.05–0.10 Hz</td>
</tr>
</tbody>
</table>
- Senses bus and gen pts
- Raises and lowers, voltage and frequency
- Issues close command when synced
Anticipatory: Close Before 0°

- Issue close command at advance angle—“anticipate midnight”

- \[AA = 360° \cdot (TCB + TR) \cdot FS \]
 - AA advance angle
 - TCB circuit-breaker close time
 - TR output relay travel (6–8 ms)
 - FS is the slip frequency
Angle and Time and Slip
- 25A - Autosynchronizer
- 25 - Sync Check
- 43 - Switch
Manual Supervised Close

DC BUS +

Interlocks

Enable 43M

Manual Close

Enable 43A

25A Close

25 Sync Check

DC BUS –

- 25A - Autosynchronizer
- 25 - Sync Check
- 43 - Switch
Automatic Supervised Close

- 25A - Autosynchronizer
- 25 - Sync Check
- 43 - Switch
- Sync across wye/delta transformer?
 - Old: phase-shift aux transformers
 - New: modern relays match all pt connections
- Connect pt phase to phase
 - Phase-to-neutral pts: unreliable voltage output
 - Phase-to-phase pts: no neutral offset
Conclusions

- Understand your sync-check and synchronization methods
- There are many ways to synchronize
- Voltage, acceptance angle, and slip frequency differ for rotating machines and line-to-bus applications
Conclusions, cont.

- Automatic synchronizer 25A adjusts voltage and frequency
- Anticipatory synchronizer adjusts for circuit-breaker closing time
- Supervise automatic and manual close with sync check 25
- Modern sync check compensates for pt connections and phase angle
Thank you for your attention.